Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.
نویسندگان
چکیده
This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported carbohydrates, as may be shown by feeding leaves with [U-13C]Glc. As a consequence of this treatment approximately 8% to 10% of the carbon emitted as isoprene was 13C labeled. In order to identify further carbon sources, poplar leaves were depleted of leaf internal carbon pools and the carbon pools were refilled with 13C labeled carbon by exposure to 13CO2. Results from this treatment showed that about 30% of isoprene carbon became 13C labeled, clearly suggesting that, in addition to xylem transported carbon and CO2, leaf internal carbon pools, e.g. starch, are used for isoprene formation. This use was even increased when net assimilation was reduced, for example by abscisic acid application. The data provide clear evidence of a dynamic exchange of carbon between different cellular precursors for isoprene biosynthesis, and an increasing importance of these alternative carbon pools under conditions of limited photosynthesis. Feeding [1,2-13C]Glc and [3-13C]Glc to leaves via the xylem suggested that alternative carbon sources are probably derived from cytosolic pyruvate/phosphoenolpyruvate equivalents and incorporated into isoprene according to the predicted cleavage of the 3-C position of pyruvate during the initial step of the plastidic deoxyxylulose-5-phosphate pathway.
منابع مشابه
Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations
Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13)CO(2)-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO(2) concentrations...
متن کاملMetabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting an...
متن کاملUse of carbon-11 in Populus shows that exogenous jasmonic acid increases biosynthesis of isoprene from recently fixed carbon
A new approach for pulse labelling of plants using the short-lived positron emitting radioisotope carbon-11 (halflife: 20.4 min) as 11 CO 2 is reported together with its application to measuring [ 11 C]isoprene emissions from intact leaves capturing information associated with: (1) rate of emission; (2) the relative contribution of recently fixed carbon to isoprene biosynthesis; and (3) the tra...
متن کاملBiogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants
BACKGROUND Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environ...
متن کاملDiurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves.
Transcript levels of mRNA from 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PcDXR), isoprene synthase (PcISPS), and phytoene synthase (PcPSY) showed strong seasonal variations in leaves of Grey poplar (Populus x canescens [Aiton] Sm.). These changes were dependent on the developmental stage and were strongly correlated to temperature and light. The expression rates of the genes PcDXR and Pc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 135 1 شماره
صفحات -
تاریخ انتشار 2004